

15ME54

Fifth Semester B.E. Degree Examination, July/August 2022 Design of Machine Elements - I

Time: 3 hrs .
Max. Marks: 80
Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. Use Data hand book is permitted

Module-1

1 a. Explain the general procedure in machine design.
(06 Marks)
b. A 40 mm diameter steel rod supports 8.0 kN load and in addition is subjected to a torsional load of 90 Nm as shown in Fig.Q1(b). Determine the maximum tensile and maximum shear stress.

Fig.Q1(b)
(10 Marks)

2 a. Discuss the statement, in static loading stress concentration in ductile materials is not so serious as in brittle materials.
(04 Marks)
b. A rectangular plate 15 mm thick made of a ductile material is shown in Fig.Q2(b). Calculate the stresses at each of the three holes considering stress concentrations factor.

Fig.Q2(b)
(12 Marks)

Module-2

3 a. Derive an expression for stress induced in the rod due to axial impact of a weight ' w ' dropped from a height ' h ' on a collar attached at the free end of the rod.
(10 Marks)
b. An unknown weight falls through 15 mm on to a collar rigidly attached to the lower end of a vertical bar 1.5 m long and 500 sq mm section. If the maximum instantaneous extension is 2 mm , what is the corresponding stress and the value of unknown weight? Take $\mathrm{E}=200 \mathrm{GPa}$.

OR

a. Derive the Soderberg equation for fluctuating loads
b. A hot rolled steel shaft is subjected to a torsional moment that varies from 250 Nm clock wise to 100 Nm counter clockwise and the Bending moment at the critical section varies from 350 Nm to 170 Nm neglecting stress concentration effect. Determine the required diameter. The material has an ultimate strength of 550 MPa and a yield strength of 410 MPa . Take the endurance limit as half of ultimate strength and a factor of safety as 2. Assume surface size and load factor for bending as $1.111,1.1765,1$ and that of torsion as 1.05263 , 1.1765 and 1.7 respectively.
(10 Marks)

Module-3

5 A hoisting drum of 500 mm diameter is keyed on to a shaft and is intended for lifting load of 20 kN at a velocity of $31.4 \mathrm{~m} / \mathrm{min}$. The shaft is supported on two bearings and carries a gear of 40 mm diameter, overhanging the nearest bearing by 200 mm [i.e 200 mm to the right of right hand bearing]. The gear ratio is $12: 1$. Determine the power and revolution per minute of the motor required assuming drive efficiency of 90%. Determine the diameter of the shaft for the hosting drum, assuming that the material of the shaft has an allowable shear stress of 60 MPa . The distance between the bearings is 1000 mm . Pressure angle $=20^{\circ}$. For suddenly applied load with minor shock the fatigue factor to be applied to the computed bending moment and the numerical combined shock and fatigue factor to be applied to the torsional moment $\mathrm{C}_{\mathrm{m}}=\mathrm{K}_{\mathrm{b}}=2$ and $\mathrm{C}_{\mathrm{t}}=\mathrm{K}_{\mathrm{t}}=1.3$. Sketch the relevant bending moment diagram.
(16 Marks)

OR

6 Design a flange coupling (unprotected type) to connect the shafts of a motor and centrifugal pump for the following specifications :
Pump output $=3000$ liters per minute, total head $=20 \mathrm{~m}$ pump speed $=600 \mathrm{rpm}$, pump efficiency $=70 \%$, select C40 steel ($\left.\sigma_{y}=328.6 \mathrm{MPa}\right)$ for shaft and key and C35 steel $\left(\sigma_{y}=304 \mathrm{MPa}\right)$ for bolts with factor of safety 2 . Use allowable shear stress in flange equal to $15 \mathrm{~N} / \mathrm{mm}^{2}$.
(16 Marks)

Module-4

7 a. Write a note on failure of riveted joints.
(04 Marks)
b. Design a double riveted butt joint with two cover plates for longitudinal seam of boiler shell of 1.5 m diameter subjected to steam pressure of $0.95 \mathrm{~N} / \mathrm{mm}^{2}$. Assume efficiency of riveted joint $=75 \%$. Allowable tensile stress is 90 MPa , crushing stress $=140 \mathrm{~N} / \mathrm{mm}^{2}$ and shear stress $=56 \mathrm{MPa}$.
(12 Marks)

OR

8 a. What are the adyantages of welded joints over riveted joints?
(05 Marks)
b. A $125 \times 95 \times 10 \mathrm{~mm}$ angle shown in Fig.Q8(b) is jointed to a flame by the two parallel welds along the edges of 125 mm length. The angle is subjected to a load of 180 kN . Find the length of the weld if the permissible load per mm weld length is 430 N .

Fig.Q8(b)
(11 Marks)
2 of 3

15ME54

Module-5

9 a. A bolt in a steel structure is subjected to a tensile load of 9 kN . The initial tightening load on the bolt is 5 kN . Determine the size of the bolt taking allowable stress in the bolt material to be 80 MPa and $\mathrm{K}=0.05$.
(04 Marks)
b. An M10 steel Bolt of 125 mm long is subjected to an impact load. The kinetic energy absorbed by the bolt is 2.5 J . Determine :
i) Stress in the shank of the bolt if there is no threaded portion between the nut and the bolt head
ii) Stress in the shank if the area of the shank is reduced to that of the root area of the thread or the entire length of the bolt is threaded.
(12 Marks)

OR

A weight of 500 kN is raised at a speed of $6 \mathrm{~m} /$ minute by two screw rods with square threads of 50×8 cut on them the two screw rods are driven through bevel gears drives by motor, determine :
i) Torque required to raise the load
ii) Speed of rotation of the screw rod assuming the threads are of double start
iii) The maximum stresses induced in the cross section of the screw rod
iv) The efficiency of screw drive
v) The length of the nuts for the purpose of supporting the load
vi) Check for overhaul.

